Isaac Newton: Princípio da Inércia e 2ª Lei de Newton


O mesmo acontece com uma bolinha que gira presa a um barbante. Para mantê-la em trajetória curvilínea, é necessário manter o barbante esticado, exercendo uma força de tração na bolinha. Se, em um determinado instante, o fio se romper, a bolinha tende a sair pela tangente devido a inércia. Vamos, agora, procurar entender o Princípio da Inércia através de um exemplo. Como num passe de mágica um mágico puxa uma toalha e todos os enfeites em cima da mesa permanecem inertes, na verdade este passe de mágica não passa da primeira de Newton, quando um corpo está parado a tendência deste corpo é continuar parado.

Isaac Newton

Força Resultante = O   <=>   Repouso ou MRU

Na prática, é muito difícil encontrar um corpo que está completamente livre da ação de forças. Quase sempre existem diversas forças atuando em um corpo. Entretanto, se as forças que atuam em um corpo tiverem resultante nula, isto é, se o corpo estiver em equilíbrio, é como se não existissem forças atuando nesse corpo. Para um corpo em equilíbrio, valem as mesmas ideias que foram desenvolvidas para um corpo livre da ação de forças. Isto é, um corpo em equilíbrio pode estar em repouso (devido à inércia de repouso) mas pode também estar em movimento retilíneo e uniforme (devido à inércia de movimento). No primeiro caso, diz-se que o corpo está em equilíbrio estático; no segundo, em equilíbrio dinâmico. Assim, um corpo em equilíbrio, isto é, um corpo em que a força resultante é nula, permanece em repouso se já o estava e permanece em movimento retilíneo uniforme se já estava se movendo. Este fato constitui o Princípio da Inércia ou 1a Lei de Newton.

Muitos motoristas desprezam as leis de trânsito quando dirigem seus veículos sem o cinto de segurança; este artefato disponível no carro é um grande exemplo do funcionamento da primeira lei de Newton, caso você venha a bater o seu carro em movimento (um carro perde o controle e bate a 120km/h em um poste) o carro para e você continua em movimento, um corpo que está em MRU (movimento retilíneo uniforme) tende a continuar em MRU.
Todo corpo em repouso ou M. R. U. tende a permanecer em repouso ou M. R. U., a não ser que uma força externa atue no corpo.

Expressando esse Princípio, matematicamente, temos:

Uma nave espacial livre de ações gravitacionais significativas do resto do universo. Com seus motores desligados, a força propulsora da nave é nula, porém ela mantém o seu movimento com velocidade constante, segundo o princípio da inércia.

fr =m.ã

2ª Lei de Newton

As definições de dina (d) newton (N) e quilograma-força (kgf) derivam da 2a lei de Newton, como veremos:

• F = m.a =»    F = Ig . lcm/s2   =>    F = l d
• F = m . a =»     F = l kg . l m/s2   =>   F = l N
•      F = m.a  =>  F = Ikg . 9,8m/s2 => F = 9,8 N => F = l kgf
Obs. IN = IO5 d   e   Ikgf = 9,8 N

Isto significa, em outras palavras, que, quando um corpo A age sobre um corpo B, este corpo B reage sobre o corpo a e as forças trocadas somente diferem quanto ao sentido. FAB : força que o corpo A aplica em B FBA : força de reação que B aplica em a. Matematicamente, podemos escrever:
O sinal (-) significa que os sentidos são opostos.

ATENÇÃO: O peso P de um corpo varia de local para local, porque o valor da aceleração da gravidade g se altera de local para local, mas sua massa m é a mesma em todos os lugares, pois depende apenas do corpo em estudo. No exemplo acima temos o mesmo corpo sendo pesado na terra e na lua (os valores não são referenciais reais). Valor da aceleração da gravidade na Terra é g = 9,8m/s , mas geralmente utilizaremos 10 m/s2, para simplificação.

“Forças de ação e reação nunca se anulam, pois são aplicadas em corpos diferentes”. É fácil compreender que, para que duas forças se neutralizem, é preciso que estejam aplicadas a um mesmo corpo. Observe que a ação está aplicada no corpo B e a reação no corpo A, não havendo possibilidade de se equilibrarem. Os efeitos provocados pelas forças podem ser diferentes, apesar de terem a mesma intensidade, pois o efeito dependerá da resistência de cada corpo.