A utilização de produtos eletrônicos é necessária para diversas tarefas do dia a dia. Arrumações na casa, atividades em escritório, recursos em salas de aula, materiais em hospitais, mercados e outros estabelecimentos são situações e razões pelas quais o uso de equipamentos eletroeletrônicos é algo importante para que esses afazeres sejam concretizados. Feitos justamente para facilitar esses trabalhos, a falta deles requer a realização dessas atividades de forma manual, tornando tudo mais difícil.
Mas para que esses produtos funcionem, é preciso de energia. E essa energia precisa ser propagada por fontes que transmitam essa conexão de maneira eficaz. As pilhas ou células eletroquímicas costumam ser essas fontes mais comuns. Através desse dispositivo que a energia elétrica pode ser aproveitada desde o momento de ligar uma televisão com o controle remoto até fazer uma câmera fotográfica funcionar, por exemplo.
Dentro do conceito da Eletroquímica, é possível entender a importância do dispositivo e compreender também de que forma a energia elétrica é armazenada e fluída a esses produtos sem nenhum problema. Através de reações, essa energia é resultado de uma interação específica e ordenada dentro do dispositivo para que ela seja bem aproveitada.
Caracterizadas como um reservatório que consegue transformar energia química em energia elétrica, as pilhas carregam células eletroquímicas conhecidas como elétrons. Os elétrons são responsáveis em desencadear uma reação a ponto de promover uma energia elétrica pura. Nesse sistema, há a oxirredução, que é a reação que ocorre na composição e todos os elétrons são aproveitados para que a energia não fique fraca ou acabe muito rápido.
Esses dispositivos são constituídos de três partes: os eletrodos, a ponte salina e o fio metálico na parte externa. Cada um deles desempenha um papel de fazer com que a oxirredução ocorra e a transformação não fique congestionada ou aconteça em modo fraco.
• Eletrodos: todas as pilhas devem ter dois polos, conhecidos como eletrodos. Os eletrodos são paralelos e complementares (um lado é positivo e outro lado negativo). A parte positiva é o cátodo, que reduz o efeito oxidante, causando ganho dos elétrons em seu lado. Já o ânodo é a parte negativa, responsável em causar a oxidação dos elétrons, resultando na perda dos mesmos;
• Ponte salina: ela também é conhecida como o eletrólito do dispositivo. É a parte que mantém os dois lados, ânion e cátodo, neutros eletricamente para que não haja uma reação nociva. Esse controle é feito com íons migrando nessa ligação que absorvem qualquer irregularidade e vão de uma parte para outra. Ela é de consistência salina porque em sua composição há o sulfato de sódio, substância salina que estabiliza a oxirredução;
• Fio metálico externo: acoplado à placa metálica, também há o fio metálico na parte externa que acomoda os eletrodos. O fio também ajuda na transferência nas células eletroquímicas para serem transformadas em energia elétrica.
A reação da oxirredução pode ser notada quando o sulfato de cobre (CuSO4) entra em contato com uma placa de cobre em um recipiente. Em outro supositório, o sulfato de zinco (ZnSO4) entra em contato com uma placa de zinco. Ligados a uma ponte salina, um fio de cobre é posto com um voltímetro para que as placas nos dois recipientes também fiquem interligadas.
A partir desse experimento, a oxirredução ocorrerá com a placa de zinco (ânodo) se oxidando e perdendo elétrons. Esses elétrons então são lançados para a outra placa metálica, a de cobre (cátodo) através da ponte salina de forma equilibrada e de forma que a reação não seja interrompida.
Nessa situação, duas semirreações ocorrem para que a oxirredução seja reconhecida:
• Parte do ânodo: Zn(s) ↔ Zn2 (aq) 2 (indicando que a placa de zinco perdeu os elétrons);
• Parte do cátodo: Cu2 (aq) 2 ↔ Cu(s) (a placa de cobre recebeu os elétrons e fica em caráter positivo).
Para chegar à fórmula da oxirredução que ocorre nas pilhas ou células eletroquímicas, a soma das semirreações é necessária para que a reação global seja reconhecida. Nesse caso, o número de elétrons deve ser igual em ambas as partes para que a equação final não apresente elétrons em excesso. A reação global ficaria, de acordo com a situação, dessa maneira:
Zn(s) Cu2 (aq) ↔ Zn2 (aq) Cu(s) = Zn / Zn2 // Cu2 / Cu
O símbolo (/) indica que o eletrólito (ponte salina) agiu durante as semirreações e proporcionou um resultado exato e sem elétrons em quantidades diferentes em um dos lados.
Esse exemplo é o que ocorre em um dispositivo comum e isolado, mas outros exemplos podem ser vistos, mas em proporções diferentes. O caso de uma bateria pode ser igual, mas ele é composto por vários dispositivos com mais eletrodos e eletrólitos. Em virtude disso, cada unidade é capaz de ser recarregada porque o fluxo de energia elétrica é maior do que apenas em um dispositivo. Por isso, as semirreações seriam maiores assim como a reação global.
This post was last modified on 7 de agosto de 2018 15:46
Neste Dia da Literatura Brasileira, professores listam 7 livros que podem cair nas provas do…
A 2ª fase do Vestibular 2025/2 da UECE acontece em dois dias, 25 e 26…
Confira o link para ver os locais de prova do vestibular 2025 da UFVJM e…
A Universidade Federal do Paraná (UFPR) recebe pedidos de isenção da taxa de inscrição para…
A UFVJM, em Minas Gerais, já recebe pedidos de isenção da taxa de inscrição da…
O resultado dos pedidos de isenção da taxa de inscrição do Vestibular 2025/2 do Cederj…